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ABSTRACT: Residual dipolar couplings (RDCs) are important
probes in structural biology, but their analysis is often complicated
by the determination of an alignment tensor or its associated
assumptions. We here apply the maximum entropy principle to
derive a tensor-free formalism which allows for direct, dynamic
analysis of RDCs and holds the classic tensor formalism as a
special case. Specifically, the framework enables us to robustly analyze data regardless of whether a clear separation of internal
and overall dynamics is possible. Such a separation is often difficult in the core subjects of current structural biology, which
include multidomain and intrinsically disordered proteins as well as nucleic acids. We demonstrate the method is tractable and
self-consistent and generalizes to data sets comprised of observations from multiple different alignment conditions.

■ INTRODUCTION

The function of biomolecules is dictated by their ability to
change shape over the course of time, that is, their dynamics.1

This has been observed experimentally for a number of
fundamental processes in biology including molecular recog-
nition.2 In recent years, there have been many significant
advances in our understanding of biomolecular dynamics as
well as important methodological contributions.3−8 Still,
reports of experimental characterization of biomolecular
dynamics at the atomic level remain a rare feat in structural
biology.9,10 Typically, biomolecular dynamics span several
spatial and temporal orders of magnitude. Nuclear magnetic
resonance spectroscopy (NMR) uniquely provides a wealth of
complementary and exquisitely detailed molecular probes
which collectively cover most of the time scales relevant to
biomolecular dynamics.11 Residual dipolar couplings (RDCs)
constitute one of these, broadly applicable to study structure
and dynamics in biological macromolecules.2,7,12−19 RDCs are
measurable given an effective average orientation, or alignment,
with respect to an external magnetic field (Figure 1, center).20

Alignment may be achieved by dissolution in a nematic phase
solvent21 or by strong inherent anisotropic magnetic suscept-
ibility.22 Often it is possible to acquire multiple sets of RDCs
for the same system by changing the experimental conditions,
yielding different alignments21−24 and thus complementary
experimental measurements.
Analysis of RDC data in terms of dynamic models is often

hampered by the assumption that the studied systems are rigid
bodies. This assumption has its origin in the formalism
pioneered by Saupe.25 At its core, the formalism has a tensor,
S, which describes the degree of order, or alignment, of a
molecular frame with respect to an external magnetic field
(Figure 1, right). Interestingly, many groups have found the

tensor framework to approximate well cases where the aligning
body is not strictly rigid;14,26 this includes multidomain
proteins with flexible linkers27 and disordered proteins.18,28

However, a number of significant difficulties arise when applied
in such cases. First, additional assumptions are often necessary.
For globular systems it is assumed that it is possible to separate
internal and overall motion.20 For flexible systems, it is assumed
that the system is composed of multiple independently aligning
segments,29 and/or it consists of a mixture of states with
different alignment properties.18,30 Apart from assessing the
validity of these assumptions, it is also difficult to gauge exactly
when these break down. The second challenge involves the
determination or prediction of physically meaningful alignment
tensors, which is not always possible,31 in particular, for highly
flexible systems. Consequently, it will be a distinct advantage to
mitigate these assumptions and technical difficulties.
With the increasing interest in dynamics in structural biology,

the field has witnessed a resurgence of the maximum entropy
principle (MEP) the last years.3−7 The application of MEP to
analyze NMR data has a long history in chemical physics, which
includes biasing simulations of small organic compounds.32−38

In structural biology, this principle allows us to derive
probability distributions of biomolecular structure from
experimental observations of average quantities. This is
tremendously useful as it enables us to reconstruct the complex
free energy landscape of biomolecules by simply observing their
average behavior along a number of experimental coordinates.
While MEP like all modeling approaches does not guarantee a
true solution, it provides the least biased solution given the
available information.39 Consequently, MEP has already seen a
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wealth of powerful applications to RDC data of oligo-
saccharides15,40,41 as well as folded7,31 and disordered
proteins.28 Unfortunately these studies either work within the
Saupe formalism employing either instantaneous or average
alignment tensors or do not accommodate the use of data from
multiple alignment conditions.
Here, we demonstrate that it is possible to analyze RDCs

directly via an alternative approach which avoids the use of
alignment tensors. Through the MEP we derive a joint
probability distribution of structure and magnetic field
orientation (Figure 1, left). This takes the recently proposed
tensor-free 'theta method' from structural biology31 and
previous efforts from chemical physics34 a step further and
allows for integration of data from multiple different alignment
conditions. We find our theoretical result is a general
framework which facilitates the determination of native state
dynamics of globular proteins and interdomain motions in
multidomain proteins with flexible linkers without the necessity
to deconvolute internal from overall dynamics. The presented
approach thus enables the structural biology community to
rigorously analyze RDCs in terms of dynamic structural models
in a unified and straightforward fashion.

■ THEORY
A Maximum Entropy Approach to the Analysis of

RDC Data. In the current context, the aim of modeling using
the MEP is to define a normalized probability density function
which is the least biased with respect to the Boltzmann
distribution of the force field, E(x), and agrees with observed
experimental data.3−7,42 For RDCs, we can construct such a
distribution by applying the MEP to the instantaneous
expression of the dipolar coupling using vector notation
(Figure 1):
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A degree of alignment parameter, s, is introduced to account for
the attenuation of the observed dipolar signal characterizing the
residual dipolar coupling. Physically, s corresponds to the
population (or molar fraction) of aligning molecules, s = a( f +
a)−1, where a and f are the molar concentration of the aligning
and isotropically tumbling molecules, respectively. We obtain a

distribution of conformations x, and magnetic field orientations
Ωb, given a vector of N a priori unknown Lagrange multipliers λ
and s, at the inverse temperature β = 1/kT:3−7,39,42
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Each of the Lagrange multipliers, λij, is associated with a
corresponding experimental dipolar coupling assignment ij in
the set of all experimentally assignable RDC observations ,
while rij(x) denotes the unit interspin vector of the observation
ij and Z−1(λ,s) is a normalization constant. To satisfy all our
requirements for the solution we need to choose λ and s in a
manner such that Dλ, s ≈ Dexp, where

∫ λ= Ω Ω |λD D s p sx r x b xd d ( ( ), , ) ( , , )ij
s

ij ijb b
,

(3)

are the elements of our vector of back-calculated data Dλ,s, for a
given λ and s, while Dexp is the vector of experimental data, that
is, our back-calculated data have to agree with the experimental
data. Consequently, we need to estimate N + 1 unknown
parameters (see the Methods section).
We may extend the formalism to incorporate information

from M different alignment conditions, m. This is achieved by
using a sum of M copies of the Lagrange term in eq 2:
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Here, each of the M terms corresponds to its own alignment
condition and has its own separate magnetic field vector bm,
degree of alignment parameter sm, and set of Lagrange
multipliers λm.

The Rigid-Body Limit Enables Computation of Saupe
Tensors. The framework defined above yields a distribution of
magnetic field orientation and the molecular structure. Thus,
we may compute RDC data directly independently of the
definition of an explicit molecular frame. We now consider the
case addressed in the Saupe tensor formalism where, x, is a rigid
body, x ̂. Under this condition the maximum entropy
distribution, eq 2, becomes a probability density function of
magnetic field orientations given x,̂ p(Ωb|x,̂ λ, s). Following

Figure 1. Illustration of RDC data from three different perspectives, under aligning conditions (yellow). Left: A joint distribution p(x, Ωb) of
structure, x (gray), and magnetic field orientation, Ωb (red), is constructed via the MEP to model the experimental RDC signal. Center: The
experimental RDC data are described well by the secular part of the heteronuclear dipolar interaction Hamiltonian, Dij, between two nuclear spins i
and j at strong magnetic fields.20 Here, θij(x,b) (green) is the angle between the unit interspin unit vector rij(x) (magenta), in the molecule x (gray),
and an external magnetic field, b (black). The interspin distance is denoted rij(x), while P2(x) = (3/2)x2 − 1/2 is the second Lagrange polynomial
and Dmax

ij = −μ0γiγjℏ/8π3 with gyromagnetic ratios γi and γj of the two nuclei, μ0 the permeability of vacuum, and Plancks constant, ℏ. Right: The
Saupe formalism models the experimental RDC data through a rigid-body assumption where a real, traceless and symmetric second rank order
tensor S (navy) relates the alignment of the internal coordinate frame of a molecule to an external magnetic field.
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estimation of λ and s, we may compute a Saupe tensor directly
from this distribution by using the expectation:

∫ λ= Ω ⊗ − Ω | ̂p sS b b I x
1
2

d (3 ) ( , , )b b (5)

where ⊗ denotes the tensor product and I is the 3 × 3 identity
matrix, and p(Ωb|x,̂ λ, s) is the distribution of orientations of the
magnetic field relative to the orientation of x.̂

■ METHODS
Estimation of the Parameters λ and s. The unknown

parameters λ and s can be computed by maximizing the agreement
of the back-calculated RDCs with experimental data. In other words,
we are looking for the set of parameters λ and s that minimizes the
expression:
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if quantitative information about experimental uncertainty, σ, is
available.
It is possible to estimate the degree of alignment parameter, s, a

priori via the histogram method or extensions thereof.43,44 Here, we
compute s at each estimation step as the value that minimizes eq 6 or
7, i.e.
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Given eq 6 or 7 we can find the optimal λ by a simple steepest
descent in the space of parameters:
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where λ(n) and s(n) are the parameters after the n-th iteration, Δt is the
step size parameter scaled by σ−2, and the partial derivatives are
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Given our experimental RDC data are conditionally independent we
are guaranteed to obtain at a unique set of Lagrange multipliers,
regardless of starting conditions, as the optimization problem is
convex.45 If the data are not strictly so the maximum entropy
distribution will still be uniquely defined, but we will converge to a
space of equivalent Lagrange multipliers.46,47

Molecular Dynamics Simulations. All simulations were carried
out in the almost48 molecular dynamics (MD) framework using the
Amber03 force field49 and a generalized Born implicit solvation
model.50 We employed SHAKE constraints on all bonds involving
protons51 and 2 fs timesteps. Simulations were kept at 300 K using a
Berendsen thermostat.52 The simulations were started from structures
deposited in the Protein Data Bank with accession codes 1E8L53 (for
lysozyme simulations) or 1Q6H54 (for sFkpA simulations) following
an energy minimization in the force field by steepest decent. All
threads were initialized with from the same coordinates but different
initial velocities (sampled according to the Maxwell−Boltzmann
distribution at 300 K) and different random seeds. The force field
was restrained by the RDC data using eqs 2 and 4 yielding a full
pseudo-energy:
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The magnetic field orientations Ωb were updated following each MD
step by 10 Monte Carlo (MC) steps. A MC step consisted of the
proposal new Ωb′ from the uniform distribution on the unit sphere
followed by an evaluation according to Metropolis’ criterion55 using
the potential expression (eq 11):

Δ = Ω Ω′ Ω − Ω Ω ΩE E Ex x( , ,..., ,..., ) ( , ,..., ,..., )i b b b b b bi M i M1 1

(12)

Here, we refer to a MD/MC step as to one MD step followed by 10
MC steps; the MC steps were done independently for each of the
alignment conditions, i. The parameters λ and s were estimated in an
iterative fashion using 384 independent short simulations run in

Figure 2. Comparison of Lagrange multipliers estimated using a 5-fold cross validation (λij
CV) and the corresponding values generated using the full

data set (λij
FULL) for each of the eight alignment media with data on lysozyme considered herein. Correlation coefficients (ρ) of the series are inset in

the upper left corner of each subplot. The error bars denote the standard deviation of the mean of each Lagrange multiplier as computed using the
four independent estimates obtained in the 5-fold cross validation.

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.5b01289
J. Am. Chem. Soc. 2015, 137, 6270−6278

6272

http://dx.doi.org/10.1021/jacs.5b01289


parrallel (4 ps for sFkpA and 4 ps for lysozyme) for each estimation
step. For lysozyme, estimation was also performed with 64
independent simulations to test stability. The moments in eq 9 used
for updating the λ and s parameters were computed using every 20th
(for lysozyme) or 10th (for sFkpA) MD/MC step of all 384
simulations. The parameters λ and s were updated every 1000 MD/
MC steps for both sFkpA and lysozyme. Following a burn-in period of
50 and 60 λ, s-estimation steps for lysozyme and sFkpA, respectively,
we collect a production ensemble (65 steps for sFkpA and 50 steps for
lysozyme). Due to finite sampling errors the parameters will fluctuate
stochastically around their average true values. For this reason we
continue updating the parameters during the production phase of the
simulation as in the burn-in phase. Atomic coordinates were saved
every 2000th MD/MC step.
In general, we find that increasing the length of short simulation has

only a minor influence on the convergence rate whereas increasing the
number of independent simulations increases the convergence rate
and overall stability. Recent methodological developments may
provide the means for future improvements in the parameter
estimation.56

Cross-Validation Tests of Lysozyme. The 5-fold cross-validation
was performed using an estimation procedure identical to that
described for lysozyme above. A total of 100 estimation steps were
carried out per cross-validation. A total of 76,800 frames were
generated for each cross-validation and the last 38,400 were used to
compute Q-factors as well as 3J couplings reported in the results
section. Average λm and sm values shown in Figure 2 and Supporting
Table 1 were computed using the final estimate.
Unrestrained Simulation. Unrestrained reference ensemble of

lysozyme was generated as in the protocol above albeit without
employing the RDC restraints and using 16 independent molecular
simulations running for a total of 124 ns.
Estimation of the Probability Density Function of Magnetic

Field Orientations in a Rigid-Body Frame. Estimation of p(Ωb|x,̂
λ, s) was performed by eliminating the MD steps from the procedure
above. Consequently, we simply performed MC sampling of the
magnetic field orientations. The Lagrange multipliers λ and the
parameter s were estimated using 50000 MC steps per estimation step,
for a total of 200 steps. Convergence was monitored every second
estimation step. After convergence, s, was kept fixed, another 200 steps
were performed to ensure stability. This procedure was carried out for
GB3 and lysozyme, respectively. For GB3 the result from the last
estimation step was used to calculate the values in Table 1, using eq 5.
Similarly, the final estimates (λij

STATIC) were used for comparison with
the corresponding dynamic ones in Supporting Figure 3.

■ RESULTS

The Rigid-Body Limit of the Maximum Entropy
Formalism of RDCs. To gain some intuition about the
presented formalism we consider the limit of where the
structure, x, is a rigid body, x.̂ This limit corresponds to the one
treated in the classic Saupe tensor formalism. Furthermore, as
described above, in this case we may compute Saupe tensors
following the estimation of the parameters λ and s. Doing so we
compare Saupe tensors computed in this fashion to those
computed with the conventional fitting procedure,57 using
experimental N−H RDCs of the third immunoglobulin binding
domain of protein G (GB3) recorded in seven different
alignment conditions.23,58 In all cases, we find the tensors to be
identical, if we consider the statistical uncertainty (Table 1).

Robust Generation of a Native-State Ensemble of
Lysozyme Using Data from Multiple Different Align-
ment Conditions. The native state dynamics of hen lysozyme
has been thoroughly characterized by experiment24 and
simulation.14,59 Consequently, it constitutes an ideal test-case
for our newly established framework. Using eq 4 we analyze the
native-state dynamics of lysozyme using H−N RDCs acquired
in eight different alignment media.24 Following 50 estimation
steps the λm (see Supporting Figure 1) and sm parameters
stabilize. This enables us to generate an ensemble of lysozyme
in excellent agreement with the RDC data, as well as,
complementary 3J coupling60 and NOE data,53 see Tables 2
and 3 and Supporting Figure 2a.

We further validated our ensemble model and the parameter
estimation procedure by a 5-fold cross-validation test. Here, we
generated five randomized, mutually exclusive training and test
sets comprised of 80% and 20% of the original data,
respectively. We subsequently repeated the estimation of λm

and sm using each of the five training sets independently
resulting in five different ensembles (CVn, n = 1, ..., 5). We held
the corresponding test sets aside for validation. During
estimation we find that both the training set (Qwork) and test
set (Qfree) stabilize rapidly to values that suggest good

Table 1. Analysis of Saupe Alignment Tensors in Seven
Different GB3 Constructs with Different Alignment
Propertiesa (see refs 23 and 58)

GB3 mutant ρ dF(SSVD, SME)

K19AD47K 0.999953 0.403
K19AT11K 0.999923 0.332
K19ED40N 0.999962 0.307
K19EK4A-C-His6 0.999939 0.425
K19EK4A-N-His6 0.999991 0.289
K19EK4A 0.999956 0.402
WT 0.984370 1.184

aCorrelation coefficient (ρ) and Frobenius distance (dF(SSVD, SME)) of
Saupe tensors computed using the reorientation expectation SME (eq
5) and using singular value decomposition SSVD, respectively. The
(Frobenius) distance between matrices A and B is given by dF(A, B) =
∥A − B∥F, where ∥U∥F = (tr(UUT))1/2. tr(·) is the matrix trace, and
UT the matrix transpose of U.

Table 2. Quantitative Evaluation of Lysozyme Models

current study 1E8L53 DeSimonei Amber03
3JHα−HN60

(RMSD, Hz)
0.95k/0.95l 1.32k/1.36l 0.67/− 1.28k/1.40l

H−N RDCa

(Q)
0.036 0.079j 0.171 0.534j

H−N RDCb

(Q)
0.048 0.082j 0.142 0.554j

H−N RDCc (Q) 0.042 0.355j 0.138 0.562j

H−N RDCd

(Q)
0.072 0.279j 0.184 0.518j

H−N RDCe (Q) 0.045 0.340j 0.221 0.586j

H−N RDCf (Q) 0.046 0.324j 0.159 0.58j

H−N RDCg (Q) 0.064 0.443j 0.219 0.552j

H−N RDCh

(Q)
0.076 0.355j 0.196 0.518j

aAlignment media: 7.5% CTAB doped bicelles. bAlignment media: 5%
bicelles. cAlignment media: ether/CTAB. dAlignment media: ether/
La3+. eAlignment media: CpBr/hex/NaBr. fAlignment media: C12E6/
hex. gAlignment media: 7% acrylamide gel. hAlignment media: Pf1.
iAll values are as reported in ref 14. jComputed using ensemble
averaged SVD.16 kComputed using Karplus parameters as reported
and described in ref 61. lComputed using Karplus parameters reported
described in ref 61.
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agreement. Not surprisingly, we find that Qfree values are
systematically larger than their corresponding Qwork values, see
Table 4. However, there are no signs of overfitting as we do not
see any systematic increases in the Qfree statistics as a function
of the estimation step (see Supporting Figure 2b−f). In
addition, the 3J coupling and NOE data back-calculated from
the cross-validation ensembles in general shows an inferior
correlation with experimental data when compared to the
ensemble generated using the full data set (See Tables 2, 3, and
4). Lagrange multipliers and degree of alignment parameters
estimated using the full data set and those computed from the
cross-validation estimation correlate surprisingly well, see
Figure 2 and Supporting Table 1.
Finally, we characterize our ensemble in terms of a pincer

motion (see Figure 3) as described previously.14 The
distribution of this angle, θ, is in qualitative agreement with a
previous report.14 However, our ensemble suggests that a
slightly wider spectrum of pincer angles is sampled while
agreeing with 3J coupling data either on par14 or better
agreement when compared to other models (Table 2).
Additionally, we compared free and antibody bound states of
lysozyme deposited in the Protein Data Bank in terms of θ and
their radius of gyration, Rg. The antibody bound forms of
lysozyme cluster in two discrete classes, one which is similar to
the apo forms, and one which appears to be a closed state
(Figure 3B). Conformations similar to both states are
consistently sampled in our MD simulations using the full
data set, either of the five cross-validation data sets or only the
Amber03 force field (see Figure 3B and Supporting Figure 4).
However, the unrestrained simulation samples an overly wide

distribution of the pincer angle, which could also explain the
inferior agreement with experimental data.

Refining Dynamic Models of Intra- And Interdomain
Flexibility. The tensor-free formalism presented here is
independent of separation of internal and overall dynamics
which is known to often hamper analysis of data on flexible
system such as multidomain proteins. For example, the analysis
of RDC data in these cases involves manual expert assessments,
often guided by complementary experiment, which in turn are
used as the basis to infer a motional model. Using the presented
framework we may supersede such manual hypothesis driven
inference of dynamics in flexible biomolecules. As an example
we here turn to the ATP-independent chaperone and peptidyl-
prolyl cis/trans-isomerase (PPIase), FkpA-ΔCT (sFkpA). The
dimeric native state of sFkpA is stabilized by intertwined helices
in dimerization domain of two independent chains. Through a
flexible α-helix (helix III) the dimerization domains are
connected to their corresponding catalytic domains. In full,
sFkpA appears as in characteristic V-shape (see Figure 4).
We apply our framework to analyze the interdomain

flexibility in sFkpA following the protocol discussed above,
using data from two alignment conditions (C12E5/hexanol/
H2O liquid crystals and Pf1 filamentous bacteriophages).27

Similarly for lysozyme, the parameters λ and s stabilizes after
approximately 50 estimation steps. Due to the relatively
anisotropic shape of sFkpA the degree of alignment parameters
s (0.55% and 0.39%) are approximately 30−100% larger than
those observed for lysozyme.62 From step 60 and on we
generate a production ensemble with average Q-factor
suggesting excellent agreement (Qaverage = 0.06) between the
generated conformational ensembles and the experimental data
(Supporting Figure 5). We find that the two C-terminal binding
domains undergo significant uncorrelated motions with respect
to the N-terminal dimerization domains, (Figures 4 and 5).
Since sFkpA is a symmetric homodimer the RDC data used

here is an average of the two chains as they have degenerate
chemical shifts. Therefore, we use the same data sets to restrain
each of the chains in the dimer. Thus, we have an internal
litmus test of convergence: agreement of the Lagrange
multipliers obtained in each of the independent chains. The
correlation coefficient of the Lagrange multipliers obtained in
the two chains is 0.99 for the data obtained in both of the
alignment media considered here. Similarly, the degree of
alignment parameters are both within a 8% relative error of
each other in the two chains.

Table 3. Average Violations of 523 Backbone−Backbone
NOE Derived Distance Restraints in Seven Ensembles of
Lysozymea

model average violation (Å) p value

CV1 0.1711 −
CV2 0.1681 −
CV3 0.1645 −
CV4 0.1682 −
CV5 0.1671 −
no data 0.1792 5.993 × 10−7

all RDC data 0.1592 10−4

aThe p-values of the unrestrained (no data) and restrained with all
RDC data (all RDC data) are computed relative to a null-hypothesis
defined by the cross-validation ensembles (CV1−5).

Table 4. Quantitative Evaluation of the 5-Fold Cross-Validation Analysis of Lysozyme

CV1 CV2 CV3 CV4 CV5
3JHα−HN60 (RMSD, Hz) 0.991i/0.996j 0.962i/0.97j 0.981i/0.987j 1.009i/1.013j 0.965i/0.971j

H−N RDCa (Qwork/Qfree) 0.036/0.29 0.033/0.196 0.033/0.298 0.036/0.23 0.036/0.183
H−N RDCb (Qwork/Qfree) 0.042/0.292 0.041/0.201 0.046/0.221 0.043/0.209 0.048/0.25
H−N RDCc (Qwork/Qfree) 0.038/0.247 0.041/0.236 0.044/0.239 0.039/0.131 0.042/0.22
H−N RDCd (Qwork/Qfree) 0.065/0.384 0.068/0.448 0.057/0.174 0.057/0.328 0.068/0.207
H−N RDCe (Qwork/Qfree) 0.043/0.27 0.039/0.182 0.041/0.334 0.042/0.253 0.042/0.158
H−N RDCf (Qwork/Qfree) 0.039/0.398 0.046/0.308 0.04/0.133 0.036/0.433 0.045/0.136
H−N RDCg (Qwork/Qfree) 0.076/0.506 0.075/0.18 0.075/0.455 0.073/0.301 0.073/0.234
H−N RDCh (Qwork/Qfree) 0.064/0.374 0.064/0.53 0.069/0.495 0.056/0.409 0.067/0.306

aAlignment media: 7.5% CTAB doped bicelles. bAlignment media: 5% bicelles. cAlignment media: ether/CTAB. dAlignment media: ether/La3+.
eAlignment media: CpBr/hex/NaBr. fAlignment media: C12E6/hex.

gAlignment media: 7% acrylamide gel. hAlignment media: Pf1. iComputed using
least-squares fitting as described in ref 61. jComputed using Karplus parameters reported described in ref 61.
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■ DISCUSSION

We present a framework to analyze RDC data independently of
the definition of alignment tensors and a separation of internal
and overall dynamics. Consequently, we may rigorously treat
data recorded on dynamically disparate systems in a unified
manner. Briefly, the framework is quantitatively summarized in
the eqs 2 and 4 and effectively constitutes a probability density
function based on a molecular mechanics force field and a
weighted sum of angular terms coupling interatomic spin
vectors rij(x) to an external magnetic field, b. In this manner,
the approach integrates the geometrical information held within
the RDC data without making prior assumptions beyond the
common: the observed data represents an average quantity, eq
1 realistically describes the experimental data, and finally the
alignment is partial and thus only a fraction of the molecules are
aligning.

We use the thoroughly characterized protein hen lysozyme to
test and validate the presented framework. We are able to
generate ensembles which are in excellent agreement with the
data from eight different alignment data simultaneously.
Additionally, we show through a 5-fold cross-validation test
that the estimation of the unknown Lagrange multipliers and
degree of alignment parameter is highly robust. The robustness
depends on the number of independent simulations used in
each estimation step, but the overall results are the same (see
Supporting Figure 1). Our cross-validation test further shows
no signs of overfitting; the sheer consequence was lower overall
quality of the cross-validation ensembles as compared to the
ensemble generated using the full data set as seen through
validation using complementary NOE and 3J coupling data
(Tables 2, 3, and 4). Consequently, the approach will also have
a distinct advantage in the case where only sparse data is
available, as it will facilitate a balanced analysis of all the
experimental data with minimal risk of overfitting.

Figure 3. (a) Schematic illustration of pincer angle θ (red) between the center of mass of domains A and B interconnected by a hinge domain. The
domains are defined by Cα atoms of residues (111−114), (80−84, 90−93), and (44−45, 51−52) for domain A, hinge, and B, respectively. (b)Two-
dimensional contour plot of the probability density distribution of θ and Cα radius of gyration, Rg, in the maximum entropy restrained simulation.
Scatter points illustrate apo (pink upward-pointing triangles) and holo (green downward-pointing triangles) forms of lysozyme deposited in the
protein data bank.

Figure 4. Top view of sFkpA with a schematic illustration of the interdomain flexibility measures used to assess qualitative agreement of the sFkpA
ensemble with NMR relaxation data in helix III. Each of the two chains (A, B) in are highlighted with cyan and purple colors, respectively. θA and θB
are defined as the angles between vectors spanned by the center of mass between Cα atoms of residues 14−84 of chain A and B and residues 85−
224 in chain A and B, respectively. Small side view render of sFkpA is shown in the lower right corner.
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The Lagrange multipliers here measure the amount
information one needs to add to the prior structural model
(e.g., a force field or a static structure) in order to obtain
agreement with the given data. To explore this we compared
parameters estimated when we assume a static structural model
to those obtained with a dynamic one (see Supporting Figure
3). We observe two differences between the Lagrange
multipliers. First, the overall scale of the Lagrange multipliers
in the static case are approximately an order of magnitude
larger, with the exception of the two data sets used to refine the
static structure. Second, we see a very poor correlation between
the two different sets of Lagrange multipliers. Consequently,
this directly shows that one needs to introduce much more bias
(information) to enable the inherently dynamically averaged
RDC data to agree with a static model. Furthermore, it suggests
that it is not generally possible to obtain reasonable, or even
relative, estimates of the Lagrange multipliers by using a static
structure.
Having thoroughly scrutinized the presented framework

using lysozyme, we move on to study the case of sFkpA where
the separation of internal and overall dynamics is not as clear.
Indeed, we are able to generate an ensemble in excellent
quantitative agreement with the RDC data. Previously, Hu et al.
reported that it was necessary to manually decompose the
catalytic and dimerization domains from each other to enable
fitting of Saupe tensors which were in reasonable, albeit not
ideal agreement with the data. The decomposition was in turn
guided by complementary NMR relaxation data which
suggested that helix 3 (see Figure 4) has a number of highly
flexible residues (residues 84−91). The ensemble we present is
in qualitative agreement with this data also. In fact, we observe
uncorrelated motions between the two C-terminal domains
with respect to the dimerization domains (see Figure 5). Hu et
al. proposed the C-terminal domains move independently of
each other to accommodate wide substrate specificity and
subsequent chaperone action through a polymorphic chaper-
one−substrate interaction surface.27 However, as the authors
pointed out, direct observation of such motion was complicated
by necessity to deconvolute internal from overall motion. The
ensemble presented here is an atomic detail model of such

motion which we obtain independently of such deconvolution.
Finally, we observe considerable intradomain flexibility, in
particular in the, N-terminal dimerization domain with a mean
backbone RMSD of 2.6 Å. This is consistent with a previous
observation that the N-terminal dimerization domain, unlike
the C-terminal binding domain, might be insufficiently
represented by the published crystal structure. Flexibility-driven
mechanisms have been reported for a number of other ATP-
independent chaperones.63−65 This indicates that the ensemble
we present here may be a biologically relevant one.

■ CONCLUSION

In conclusion, we present a new framework for direct, tensor-
free, analysis of RDC data in terms of dynamic models of
biological macromolecules which holds the Saupe tensor
formalism as a special case. Further, we demonstrate the
methods broad applicability and tractability through two
examples were we robustly determine native state ensembles
of two structurally and dynamically different proteins.
Specifically, we show that flexible multidomain systems may
be analyzed in a fashion completely analogous to that of
relatively rigid proteins. We anticipate the approach to extend
beyond the type of systems addressed here and, in particular,
excel for very flexible systems where deconvolution of internal
and overall motion is not possible.
The method has been implemented in the freely available

open source frameworks for molecular simulations almost48

and phaistos67 as well as the PLUMED2 framework.68 We
have made a number of example scripts publicly available which
should make it easy for the scientific community to adopt the
presented methodology at https://github.com/cavallilab/
meprdc.

■ ASSOCIATED CONTENT

*S Supporting Information
Additional figures and tables showing convergence of Lagrange
multipliers and Q factors in parameter estimation, joint
probability densities of pincer-angle and Rg and auxiliary
results. The Supporting Information is available free of charge

Figure 5. Illustration of uncorrelated motion observed in the sFkpA ensemble generated in the present study. (a) Scatterplot of the cosines of angles
θA and θB as defined in Figure 4. Inset value (ρ) is the computed Pearson’s correlation coefficient using 100 randomly selected structures from the
full ensemble. (b) Ray-trace rendering of 50 randomly selected structures from the sFkpA ensemble, with the dimerization domains are shown in
gray and the catalytic domains are shown with a diverging color gradient.66
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on the ACS Publications website at DOI: 10.1021/
jacs.5b01289.
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(40) Stevensson, B.; Landersjö, C.; Widmalm, G.; Maliniak, A. J. Am.
Chem. Soc. 2002, 124, 5946−5947.
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